If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2+16x=12
We move all terms to the left:
16x^2+16x-(12)=0
a = 16; b = 16; c = -12;
Δ = b2-4ac
Δ = 162-4·16·(-12)
Δ = 1024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1024}=32$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-32}{2*16}=\frac{-48}{32} =-1+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+32}{2*16}=\frac{16}{32} =1/2 $
| a+3a+(a+80)=180 | | a+3a+(a+65)=180 | | 6w=77-6w | | x+15=16x | | 3p=-2p | | X-36=6(-x+1) | | 2x+6=140-34 | | x+x^2=57.5 | | (z)11=33 | | 45=x+13 | | 2.2x2.2=4.84 | | 2(x+4)^2-7=43 | | -3x^2+1=28 | | 2x-12-12=18 | | 14+3x=24 | | 3=3/2x3 | | 3s=74+20 | | a+5/6=1 | | 4n+3=135+166 | | 3v+1=116+58 | | 5x+7x+8x=35+40 | | (9z-7)+(7z+7)=180 | | 6s-7+5s+5+90=180 | | 2x9=2x+2 | | 1=180-1/2x | | 0=180-1/2x | | 8r-6+7r+3+90=180 | | 53+9b+1+90=180 | | 2v+8+3v-8+90=180 | | 7-12x3+4=-25 | | -x-^2+29x+342=0 | | 35^2+2835x=0 |